题目内容

已知递增等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)若数学公式,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整数n的最小值.

解:(I)由题意,得,…(2分)
解得…(4分)
由于{an}是递增数列,所以a1=2,q=2
即数列{an}的通项公式为an=2•2n-1=2n…(6分)
(Ⅱ)…(8分)
Sn=b1+b2+…+bn=-(1×2+2×22+…+n×2n)①
则2Sn=-(1×22+2×23+…+n×2n+1)②
②-①,得Sn=(2+22+…+2n)-n•2n+1=2n+1-2-n•2n+1
即数列{bn}的前项和Sn=2n+1-2-n•2n+1…(10分)
则Sn+n•2n+1=2n+1-2>62,所以n>5,
即n的最小值为6.…(12分)
分析:(I)由题意,得,由此能求出数列{an}的通项公式.
(Ⅱ),Sn=b1+b2+…+bn=-(1×2+2×22+…+n×2n),所以数列{bn}的前项和Sn=2n+1-2-n•2n+1,使Sn+n•2n+1>62成立的正整数n的最小值.
点评:本题考查数列的性质的应用,解题时要认真审题,注意数列与不等式的综合运用,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网