题目内容

数列{an}的前n项和为Sna1=4,an+1=
2n
Sn.数列{bn}满足b1=b2=1
.Sn(bn+3bn-bn+12)+bn+1bn=0.
(I)求{an},{bn}的通项公式;
(II)求证:b3+b2+…+bn<4.
分析:(I)由an+1=
2
n
Sn
,得Sn=
n
2
an+1
Sn-1=
n-1
2
an(n≥2)
,故an=Sn-Sn-1=
n
2
an+1-
n-1
2
an
an+1
an
=
n+1
n
(n≥2)
,所以
an
a1
=
an
an-1
×
an-1
an-2
×…×
a2
a1
=
n
n-1
×
n-1
n-2
×…×
2
1
=n
,由此导an=4n.Sn=
(4+4n)n
2
=2n(n+1)
,所以2n(n+1)(bn+2bn-bn+12)+bn+1bn=0,
bn+2bn-bn+12
bn+1bn
=-
1
2n(n+1)
,由此能求出}{bn}的通项公式.
(II)令Tn=b1+b2+…+bn=1+2×
1
2
+3×(
1
2
)
2
+…+n×(
1
2
)
n-1
,由错位相减法知Tn=4-
2n+4
2n
,由此能够证明b3+b2+…+bn<4.
解答:解:(I)由an+1=
2
n
Sn
,得Sn=
n
2
an+1
Sn-1=
n-1
2
an(n≥2)

an=Sn-Sn-1=
n
2
an+1-
n-1
2
an

an+1
an
=
n+1
n
(n≥2)

a2=
2
1
S1=2a1

an+1
an
=
n+1
n
 (n≥1)

an
a1
=
an
an-1
×
an-1
an-2
×…×
a2
a1
=
n
n-1
×
n-1
n-2
×…×
2
1
=n
,n≥2,
∴an=4n(n≥2).
∵a1=4满足上式,
∴an=4n.
∵{an}是等差数列,Sn=
(4+4n)n
2
=2n(n+1)

∴2n(n+1)(bn+2bn-bn+12)+bn+1bn=0,
bn+2bn-bn+12
bn+1bn
=-
1
2n(n+1)

bn+2
bn+1
-
bn+1
bn
=
-1
2n(n+1)

当n≥3时,
bn
bn-1
-
bn-1
bn-2
=
-1
2(n-2)(n-1)

bn
bn-1
=(
bn
bn-1
-
bn-1
bn-2
) +(
bn-1
bn-2
-
bn-2
bn-3
)
+…+(
b3
b2
-
b2
b1
)  +
b2
b1

=-
1
2
[
1
(n-2)(n-1)
+
1
(n-3)(n-2)
+…+
1
1×2
]+1

=-
1
2
[(
1
n-2
-
1
n-1
)+(
1
n-3
-
1
n-2
)+…+(1-
1
2
)]+1

=-
1
2
(1-
1
n-1
)  +1

=
n
2(n-1)

bn
b1
=
bn
bn-1
×
bn-1
bn-2
×…×
b2
b1
=
n
2(n-1)
×
n-1
2(n-2)
×…×
2
2×1
=
n
2n-1

bn=
n
2n-1
,显然,n=1,n=2时,上式也成立,
bn=
n
2n-1
,n≥1.
(II)令Tn=b1+b2+…+bn=1+2×
1
2
+3×(
1
2
)
2
+…+n×(
1
2
)
n-1

1
2
Tn=1×
1
2
+2×(
1
2
)
2
+…+ n×(
1
2
)
n

两式相减,得
1
2
Tn=1+
1
2
+(
1
2
)
2
+…+(
1
2
)
n-1
-n×(
1
2
)
n

=2-(
1
2
)
n-1
-n×(
1
2
)
n

=2-(n+2)×(
1
2
)
n

Tn=4-
2n+4
2n

∴b3+b2+…+bn<4.
点评:第(I)题考查利用数列的递推公式求解通项公式的方法;第(II)题考查利用累加法求解数列前n项和的方法,解题时要认真审题,仔细解答.
(本题应该把Sn(bn+3bn-bn+12)+bn+1bn=0修改为:Sn(bn+2bn-bn+12)+bn+1bn=0.)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网