题目内容
数列{an}的前n项和为Sn,a1=4,an+1=| 2 | n |
(I)求{an},{bn}的通项公式;
(II)求证:b3+b2+…+bn<4.
分析:(I)由an+1=
Sn,得Sn=
an+1,Sn-1=
an(n≥2),故an=Sn-Sn-1=
an+1-
an,
=
(n≥2),所以
=
×
×…×
=
×
×…×
=n,由此导an=4n.Sn=
=2n(n+1),所以2n(n+1)(bn+2bn-bn+12)+bn+1bn=0,
=-
,由此能求出}{bn}的通项公式.
(II)令Tn=b1+b2+…+bn=1+2×
+3×(
)2+…+n×(
)n-1,由错位相减法知Tn=4-
,由此能够证明b3+b2+…+bn<4.
| 2 |
| n |
| n |
| 2 |
| n-1 |
| 2 |
| n |
| 2 |
| n-1 |
| 2 |
| an+1 |
| an |
| n+1 |
| n |
| an |
| a1 |
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
| n |
| n-1 |
| n-1 |
| n-2 |
| 2 |
| 1 |
| (4+4n)n |
| 2 |
| bn+2bn-bn+12 |
| bn+1bn |
| 1 |
| 2n(n+1) |
(II)令Tn=b1+b2+…+bn=1+2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2n+4 |
| 2n |
解答:解:(I)由an+1=
Sn,得Sn=
an+1,Sn-1=
an(n≥2),
∴an=Sn-Sn-1=
an+1-
an,
∴
=
(n≥2),
又a2=
S1=2a1,
∴
=
(n≥1),
∴
=
×
×…×
=
×
×…×
=n,n≥2,
∴an=4n(n≥2).
∵a1=4满足上式,
∴an=4n.
∵{an}是等差数列,Sn=
=2n(n+1),
∴2n(n+1)(bn+2bn-bn+12)+bn+1bn=0,
=-
,
∴
-
=
,
当n≥3时,
-
=
,
=(
-
) +(
-
)+…+(
-
) +
=-
[
+
+…+
]+1
=-
[(
-
)+(
-
)+…+(1-
)]+1
=-
(1-
) +1
=
.
=
×
×…×
=
×
×…×
=
,
∴bn=
,显然,n=1,n=2时,上式也成立,
∴bn=
,n≥1.
(II)令Tn=b1+b2+…+bn=1+2×
+3×(
)2+…+n×(
)n-1,
Tn=1×
+2×(
)2+…+ n×(
)n,
两式相减,得
Tn=1+
+(
)2+…+(
)n-1-n×(
)n
=2-(
)n-1-n×(
)n
=2-(n+2)×(
)n,
∴Tn=4-
,
∴b3+b2+…+bn<4.
| 2 |
| n |
| n |
| 2 |
| n-1 |
| 2 |
∴an=Sn-Sn-1=
| n |
| 2 |
| n-1 |
| 2 |
∴
| an+1 |
| an |
| n+1 |
| n |
又a2=
| 2 |
| 1 |
∴
| an+1 |
| an |
| n+1 |
| n |
∴
| an |
| a1 |
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
| n |
| n-1 |
| n-1 |
| n-2 |
| 2 |
| 1 |
∴an=4n(n≥2).
∵a1=4满足上式,
∴an=4n.
∵{an}是等差数列,Sn=
| (4+4n)n |
| 2 |
∴2n(n+1)(bn+2bn-bn+12)+bn+1bn=0,
| bn+2bn-bn+12 |
| bn+1bn |
| 1 |
| 2n(n+1) |
∴
| bn+2 |
| bn+1 |
| bn+1 |
| bn |
| -1 |
| 2n(n+1) |
当n≥3时,
| bn |
| bn-1 |
| bn-1 |
| bn-2 |
| -1 |
| 2(n-2)(n-1) |
| bn |
| bn-1 |
| bn |
| bn-1 |
| bn-1 |
| bn-2 |
| bn-1 |
| bn-2 |
| bn-2 |
| bn-3 |
| b3 |
| b2 |
| b2 |
| b1 |
| b2 |
| b1 |
=-
| 1 |
| 2 |
| 1 |
| (n-2)(n-1) |
| 1 |
| (n-3)(n-2) |
| 1 |
| 1×2 |
=-
| 1 |
| 2 |
| 1 |
| n-2 |
| 1 |
| n-1 |
| 1 |
| n-3 |
| 1 |
| n-2 |
| 1 |
| 2 |
=-
| 1 |
| 2 |
| 1 |
| n-1 |
=
| n |
| 2(n-1) |
| bn |
| b1 |
| bn |
| bn-1 |
| bn-1 |
| bn-2 |
| b2 |
| b1 |
| n |
| 2(n-1) |
| n-1 |
| 2(n-2) |
| 2 |
| 2×1 |
| n |
| 2n-1 |
∴bn=
| n |
| 2n-1 |
∴bn=
| n |
| 2n-1 |
(II)令Tn=b1+b2+…+bn=1+2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=2-(
| 1 |
| 2 |
| 1 |
| 2 |
=2-(n+2)×(
| 1 |
| 2 |
∴Tn=4-
| 2n+4 |
| 2n |
∴b3+b2+…+bn<4.
点评:第(I)题考查利用数列的递推公式求解通项公式的方法;第(II)题考查利用累加法求解数列前n项和的方法,解题时要认真审题,仔细解答.
(本题应该把Sn(bn+3bn-bn+12)+bn+1bn=0修改为:Sn(bn+2bn-bn+12)+bn+1bn=0.)
(本题应该把Sn(bn+3bn-bn+12)+bn+1bn=0修改为:Sn(bn+2bn-bn+12)+bn+1bn=0.)
练习册系列答案
相关题目