搜索
题目内容
设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)的表达式.
试题答案
相关练习册答案
解:令x=y,得f(0)=f(x)-x(2x-x+1)=1,
所以f(x)=x
2
+x+1.
练习册系列答案
同步练习目标与测试系列答案
复习计划风向标暑系列答案
开心快乐假期作业暑假作业西安出版社系列答案
学业考试综合练习册系列答案
名题训练系列答案
全品中考试卷系列答案
全效系列丛书赢在期末系列答案
新天地期末系列答案
期末集结号系列答案
全优达标测试卷系列答案
相关题目
设函f(x)是定义在R上的周期为3的奇函数,f(1)<1,f(2)=
2a-1
a+1
,则a的取值范围是
.
(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数
f(x)=(
1
2
)
x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x
2
为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a
2
|-a
2
,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
(写出所有正确命题的序号).
设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0)、斜率为1的射线;又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线.求函数f(x)的解析式,画出流程图,并编写一个程序,对每一个输入的x值,求出相应的函数值.
设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0)、斜率为1的射线;又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线.求函数f(x)的解析式,画出程序框图,并编写一个程序,对每一个输入的x值,求出相应的函数值.
设函f(x)是定义在R上的周期为3的奇函数,f(1)<1,f(2)=
,则a的取值范围是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案