题目内容
已知函数f(x)=2x+1,x∈N*.若?x0,n∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.函数f(x)的“生成点”共有( )
| A.1个 | B.2个 | C.3个 | D.4个 |
由f(x0)+f(x0+1)+…+f(x0+n)=63,
得(2x0+1)+[2(x0+1)+1]+…+[2(x0+n)+1]=63
所以2(n+1)x0+2(1+2+…n)+(n+1)=63,即(n+1)(2x0+n+1)=63,
由x0,n∈N*,得
或
,解得
或
,
所以函数f(x)的“生成点”为(1,6),(9,2).
故选B.
得(2x0+1)+[2(x0+1)+1]+…+[2(x0+n)+1]=63
所以2(n+1)x0+2(1+2+…n)+(n+1)=63,即(n+1)(2x0+n+1)=63,
由x0,n∈N*,得
|
|
|
|
所以函数f(x)的“生成点”为(1,6),(9,2).
故选B.
练习册系列答案
相关题目