题目内容
已知数列{an}满足an+1=| 1+an |
| 3-an |
| 1 |
| 3 |
(I)求证:数列{
| 1 |
| an-1 |
(II)令bn=
| 2 |
| (n+2)2an |
分析:(I)对an+1=
两边同时减去1,整理得到an+1-1=
-1=
,然后两边同时取倒数得到
=-
+
,即
-
=-
,进而可证数列{
}是等差数列,结合等差数列的定义可得到
=
=-
,整理即可得到an的表达式.
(II)先根据(I)中的an的表达式表示出bn,然后根据数列求和的裂项法求得答案.
| 1+an |
| 3-an |
| 1+an |
| 3-an |
| 2an-2 |
| 3-an |
| 1 |
| an+1-1 |
| 1 |
| 2 |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
| 1 |
| an-1 |
| 1 |
| 2 |
| 1 |
| an-1 |
| 1 |
| an-1 |
| 1 | ||
|
| 3 |
| 2 |
(II)先根据(I)中的an的表达式表示出bn,然后根据数列求和的裂项法求得答案.
解答:解:(I)∵an+1=
∴an+1-1=
-1=
故
=
=
+
=-
+
∴
-
=-
∴数列{
}是公差为-
的等差数列
而a1=
,∴
=
=-
∴
=-
-
(n-1)
=-
∴an-1=-
an=1-
=
(II)由(I)知an=
∴bn=
=
=
-
故Tn=b1+b2++bn=
-
+
-
++
-
=1+
-
-
=
-
| 1+an |
| 3-an |
| 1+an |
| 3-an |
| 2an-2 |
| 3-an |
故
| 1 |
| an+1-1 |
| 3-an |
| 2an-2 |
| 1-an |
| 2an-2 |
| 2 |
| 2an-2 |
| 1 |
| 2 |
| 1 |
| an-1 |
∴
| 1 |
| an+1-1 |
| 1 |
| an-1 |
| 1 |
| 2 |
∴数列{
| 1 |
| an-1 |
| 1 |
| 2 |
而a1=
| 1 |
| 3 |
| 1 |
| an-1 |
| 1 | ||
|
| 3 |
| 2 |
∴
| 1 |
| an-1 |
| 3 |
| 2 |
| 1 |
| 2 |
=-
| n+2 |
| 2 |
∴an-1=-
| 2 |
| n+2 |
an=1-
| 2 |
| n+2 |
=
| n |
| n+2 |
(II)由(I)知an=
| n |
| n+2 |
∴bn=
| 2 | ||
(n+2)2•
|
| 2 |
| n(n+2) |
| 1 |
| n |
| 1 |
| n+2 |
故Tn=b1+b2++bn=
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
点评:本题主要考查求数列的通项公式和前n项和的裂项法.考查对数列知识的综合运用.
练习册系列答案
相关题目