题目内容

从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为(  )
分析:可根据直方图中各个矩形的面积之和为1,列得一元一次方程,解出a,欲求选取的人数,可先由直方图找出三个区域内的学生总数,及其中身高在[140,150]内的学生人数,再根据分层抽样的特点,代入其公式求解.
解答:解:∵直方图中各个矩形的面积之和为1,
∴10×(0.005+0.035+a+0.02+0.01)=1,
解得a=0.03.
由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.
其中身高在[140,150]内的学生人数为10人,
所以身高在[140,150]范围内抽取的学生人数为
18
60
×10=3人.
故选B.
点评:本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网