题目内容
在△ABC中,角A、B、C的对边分别为a,b,c,已知bcosC=(2a-c)cosB.(1)求角B的大小;
(2)若a,b,c成等比数列,试确定△ABC的形状.
【答案】分析:(1)利用正弦定理把所给的式子转化为含有角的式子,再由两角和的正弦公式和内角和定理进行化简,求出角B的余弦值,进而求出B;
(2)由(1)的结果和余弦定理,求出边之间的关系,进而判断出三角形的形状.
解答:解:(1)∵bcosC=(2a-c)cosB
∴由正弦定理得,sinBcosC=(2sinA-sinC)cosB,
sinBcosC=2sinAcosB-sinCcosB,
sin(B+C)=2sinAcosB,
∵B+C=π-A,∴sin(B+C)=sinA,
∴cosB=
,则B=60°;
(2)∵a,b,c成等比数列,∴b2=ac,
由(1)得,B=60°,
根据余弦定理得,b2=a2+c2-2accosB,
∵b2=ac,∴ac=a2+c2-ac,即(a-c)2=0,
∴a=c,
故三角形是等边三角形.
点评:本题考查了正弦定理和余弦定理的综合应用,实现角边相互转化,是判断三角形的形状常采用的一种方法.
(2)由(1)的结果和余弦定理,求出边之间的关系,进而判断出三角形的形状.
解答:解:(1)∵bcosC=(2a-c)cosB
∴由正弦定理得,sinBcosC=(2sinA-sinC)cosB,
sinBcosC=2sinAcosB-sinCcosB,
sin(B+C)=2sinAcosB,
∵B+C=π-A,∴sin(B+C)=sinA,
∴cosB=
(2)∵a,b,c成等比数列,∴b2=ac,
由(1)得,B=60°,
根据余弦定理得,b2=a2+c2-2accosB,
∵b2=ac,∴ac=a2+c2-ac,即(a-c)2=0,
∴a=c,
故三角形是等边三角形.
点评:本题考查了正弦定理和余弦定理的综合应用,实现角边相互转化,是判断三角形的形状常采用的一种方法.
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |