题目内容
已知数列{an}的前n项和为Sn,且满足an=| 1 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2an,cn=
| 1 |
| bnbn+2 |
| k |
| 24 |
| k+13 |
| 24 |
分析:(1)由an=
Sn+1,知an-1=
Sn-1+1(n≥2),从而an=2an-1(n≥2),由此能够求出数列{an}的通项公式;
(2)bn=n,cn=
=
(
-
),裂项相消得Tn=
(1+
-
-
)=
-
(
+
),T1≤Tn<
,即
≤Tn<
,由此能求出使得
<Tn<
对n∈N*都成立的所有正整数k的值.
| 1 |
| 2 |
| 1 |
| 2 |
(2)bn=n,cn=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 1 |
| 3 |
| 3 |
| 4 |
| k |
| 24 |
| k+13 |
| 24 |
解答:解:(1)an=
Sn+1①
an-1=
Sn-1+1(n≥2)②
①-②得:an=2an-1(n≥2),又易得a1=2∴an=2n(4分)
(2)bn=n,cn=
=
(
-
)
裂项相消可得Tn=
(1+
-
-
)=
-
(
+
)(8分)
∵T1≤Tn<
,即
≤Tn<
(10分)
∴欲
<Tn<
对n∈N*都成立,须
,得5≤k<8,
又k正整数,∴k=5、6、7(12分)
| 1 |
| 2 |
an-1=
| 1 |
| 2 |
①-②得:an=2an-1(n≥2),又易得a1=2∴an=2n(4分)
(2)bn=n,cn=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
裂项相消可得Tn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∵T1≤Tn<
| 3 |
| 4 |
| 1 |
| 3 |
| 3 |
| 4 |
∴欲
| k |
| 24 |
| k+13 |
| 24 |
|
又k正整数,∴k=5、6、7(12分)
点评:本题考查求解数列通项公式的方法和裂项求和法的应用,解题时要灵活运用不等式的性质求解参数的取值范围.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |