题目内容
已知f(x)是二次函数,对任意x∈R都满足f(x+1)-f(x)=-2x+1,且f(0)=1.
(1)求f(x)的解析式;
(2)如果函数y=f(x)的图象恒在y=-x+m的图象下方,求实数m的取值范围;
(3)如果m∈[-1,1]时,不等式f(x)>mx+1恒成立,求实数x的取值范围.
(1)求f(x)的解析式;
(2)如果函数y=f(x)的图象恒在y=-x+m的图象下方,求实数m的取值范围;
(3)如果m∈[-1,1]时,不等式f(x)>mx+1恒成立,求实数x的取值范围.
分析:(1)设f(x)=ax2+bx+c(a≠0),由f(0)=1,f(x+1)-f(x)=2ax+a+b=-2x+1,可求a,b,c进而可求函数f(x)
(2)由题意-x2+2x+1<-x+m在x∈R上恒成立,即m>-x2+3x+′1在R上恒成立.令g(x)=-x2+3x+1,则只有m>g(x)max即可
(3)由m∈[-1,1]时,不等式f(x)>mx+1恒成立,可得mx+x2-2x<0在m∈[-1,1]上恒成立,令g(m)=mx+(x2-2x),结合一次函数的性质可得
,从而可求x的范围
(2)由题意-x2+2x+1<-x+m在x∈R上恒成立,即m>-x2+3x+′1在R上恒成立.令g(x)=-x2+3x+1,则只有m>g(x)max即可
(3)由m∈[-1,1]时,不等式f(x)>mx+1恒成立,可得mx+x2-2x<0在m∈[-1,1]上恒成立,令g(m)=mx+(x2-2x),结合一次函数的性质可得
|
解答:解:(1)设f(x)=ax2+bx+c(a≠0),…..1 分
∵f(0)=1
∴c=1,….(2分)
又f(x+1)-f(x)=2ax+a+b=-2x+1,
∴a=-1,b=2,….(2分)
故f(x)=-x2+2x+1….(1分)
(2)由题意-x2+2x+1<-x+m在x∈R上恒成立,即m>-x2+3x+′1在R上恒成立.
令g(x)=-x2+3x+1易知g(x)max=g(
)=
,所以m>
.…(4分)
说明:此题若直接用△做同样得满分.
(3)因为m∈[-1,1]时,不等式f(x)>mx+1恒成立,
即mx+x2-2x<0在m∈[-1,1]上恒成立.
令g(m)=mx+(x2-2x),
则由
∴0<x<1….(4分)
∵f(0)=1
∴c=1,….(2分)
又f(x+1)-f(x)=2ax+a+b=-2x+1,
∴a=-1,b=2,….(2分)
故f(x)=-x2+2x+1….(1分)
(2)由题意-x2+2x+1<-x+m在x∈R上恒成立,即m>-x2+3x+′1在R上恒成立.
令g(x)=-x2+3x+1易知g(x)max=g(
| 3 |
| 2 |
| 13 |
| 4 |
| 13 |
| 4 |
说明:此题若直接用△做同样得满分.
(3)因为m∈[-1,1]时,不等式f(x)>mx+1恒成立,
即mx+x2-2x<0在m∈[-1,1]上恒成立.
令g(m)=mx+(x2-2x),
则由
|
∴0<x<1….(4分)
点评:本题主要考查了利用待定系数法求解二次函数的解析式,二次函数的恒成立求解参数问题一般转化为求解函数的最值,及利用转化与化归思想把所求二次函数转化为关于m的一次函数进行求解
练习册系列答案
相关题目