题目内容
是椭圆的左焦点,是椭圆上一点,轴,,求椭圆的离心率。
设椭圆的方程为:,∵轴,∴,,∴,,又,∴,∴,∴。
(本小题满分13分)
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的
左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭
圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点
分别 为和
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?
若存在,求的值;若不存在,请说明理由.
. 已知椭巩上一点P到其左准线的距离为10,F是该椭圆的左焦点,若点M满足(其中O为坐标原点),则=_________
(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.
已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为、,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.
(1)当时,求椭圆的方程;
(2)在(1)的条件下,直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;
(3)由抛物线弧和椭圆弧
()合成的曲线叫“抛椭圆”,是否存在以原点为直角顶点,另两个顶点落在“抛椭圆”上的等腰直角三角形,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.
以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆中心O并交椭圆于点M、N,若过椭 圆左焦点F1的直线MF1是圆F2的切线,则椭圆的右准线与圆F2
A.相交 B.相离
C.相切 D.位置关系随离心率改变