题目内容
已知函数f(x)=
-x(0<x<
).
(1)求f(x)的导数f′(x);
(2)求证:不等式sin3x>x3cosx在(0,
]上恒成立;
(3)求g(x)=
-
(0<x≤
)的最大值.
| sinx | |||
|
| π |
| 2 |
(1)求f(x)的导数f′(x);
(2)求证:不等式sin3x>x3cosx在(0,
| π |
| 2 |
(3)求g(x)=
| 1 |
| sin2x |
| 1 |
| x2 |
| π |
| 2 |
(1)根据求导的运算法则得出f′(x)=cos
x+
sin2xcos
x-1;
(2)由(1)知f′(x)=cos
x+
sin2xcos-
x-1,其中f(0)=0
令f′(x)=G(x),对G(x)求导数得G′(x)
G′(x)=
cos-
x(-sinx)+
[2sinxcosxcos-
x+sin2x(-
)cos
x(-sinx)]
=
sin3xcos
x>0在x∈(0,
)上恒成立.
故G(x)即f(x)的导函数在(0,
)上为增函数,故f′(x)>f′(0)=0
进而知f(x)在(0,
)上为增函数,故f(x)>f(0)=0,当x=
时,sin3x>x3cosx显然成立.
于是有sin3x-x3cosx>0在(0,
]上恒成立.
(3)∵由(2)可知sin3x-x3cosx>0在(0,
]上恒成立.
则g′(x)=
>0在(0,
]上恒成立.即g(x)在(0,
]单增
于是g(x)≤g(
)=
.故g(x)=
-
(0<x≤
)的最大值为
.
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
(2)由(1)知f′(x)=cos
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
令f′(x)=G(x),对G(x)求导数得G′(x)
G′(x)=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 7 |
| 3 |
=
| 4 |
| 9 |
| 7 |
| 3 |
| π |
| 2 |
故G(x)即f(x)的导函数在(0,
| π |
| 2 |
进而知f(x)在(0,
| π |
| 2 |
| π |
| 2 |
于是有sin3x-x3cosx>0在(0,
| π |
| 2 |
(3)∵由(2)可知sin3x-x3cosx>0在(0,
| π |
| 2 |
则g′(x)=
| 2(sin3x-x3cosx) |
| x3sin3x |
| π |
| 2 |
| π |
| 2 |
于是g(x)≤g(
| π |
| 2 |
| 4 |
| π2 |
| 1 |
| sin2x |
| 1 |
| x2 |
| π |
| 2 |
| 4 |
| π2 |
练习册系列答案
相关题目