题目内容
已知数列{an}和{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,n∈N*.求数列{bn}的通项公式.分析:由题设条件推出bn-bn+1=bnbn+1,bn≠0否则an=1,与a1=2矛盾,从而得
-
=1,所以
=n,由此可知bn=
.
| 1 |
| bn+1 |
| 1 |
| bn |
| 1 |
| bn |
| 1 |
| n |
解答:解:由bn=an-1得an=bn+1代入an-1=an(an+1-1)得bn=(bn+1)bn+1,整理得bn-bn+1=bnbn+1,
∵bn≠0否则an=1,与a1=2矛盾,从而得
-
=1,
∵b1=a1-1=1
∴数列{
}是首项为1,公差为1的等差数列
∴
=n,即bn=
.
∵bn≠0否则an=1,与a1=2矛盾,从而得
| 1 |
| bn+1 |
| 1 |
| bn |
∵b1=a1-1=1
∴数列{
| 1 |
| bn |
∴
| 1 |
| bn |
| 1 |
| n |
点评:本题考查数列的求和公式,解题时要认真审题,仔细解答.
练习册系列答案
相关题目