题目内容

在△ABC中,角A,B,C的对边分别为a,b,c,若b2=ac,且c=2a,则cosB等于
3
4
3
4
分析:将第二个等式代入第一个等式用a表示出b,再利用余弦定理表示出cosB,将三边长代入计算即可求出值.
解答:解:将c=2a代入得:b2=ac=2a2,即b=
2
a,
∴cosB=
a2+c2-b2
2ac
=
a2+4a2-2a2
4a2
=
3
4

故答案为:
3
4
点评:此题考查了余弦定理,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网