题目内容
(2012•肇庆一模)已知集合M={x|x-1<0},N={x|x2-5x+6>0},则M∩N=( )
分析:通过求解一次不等式和二次不等式化简集合M与集合N,然后直接利用交集运算求解.
解答:解:由M={x|x-1<0}={x|x<1},N={x|x2-5x+6>0}={x|x<2或x>3},
所以M∩N={x|x<1}∩{x|x<2或x>3}={x|x<1}.
故选A.
所以M∩N={x|x<1}∩{x|x<2或x>3}={x|x<1}.
故选A.
点评:本题考查了一元一次不等式和一元二次不等式的解法,考查了交集及其运算,是基础的运算题.
练习册系列答案
相关题目