题目内容
数列{an}中,a1=| 1 |
| 2 |
| nan |
| (n+1)(nan+1) |
(1)设bn=
| 1 |
| nan |
(2)求Sn的表达式;
(3)求证:
| n |
| i=1 |
| Si |
| Si+1 |
| 1 | ||
|
| 2 |
分析:(1)根据题中已知条件先求出bn+1与bn的关系即可证明数列{bn}是首项为2,公差为1等差数列;
(2)先根据(1)中求得的bn的通项公式即可求出an的通项公式,然后便可求出前n项的和为Sn的表达式;
(3)根据前面求得的Sn的表达式先求出
的表达式,然后证明出(1-
)
<2(
-
),即可证明证:
(1-
)
<2(
-1).
(2)先根据(1)中求得的bn的通项公式即可求出an的通项公式,然后便可求出前n项的和为Sn的表达式;
(3)根据前面求得的Sn的表达式先求出
| Si |
| Si+1 |
| Si |
| Si+ 1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| n |
| i=1 |
| Si |
| Si+1 |
| 1 | ||
|
| 2 |
解答:解:(1)证明:∵bn=
,
∴bn+1=
,
∵an+1=
,
∴bn+1-bn=
-
=
-
=
-
=1(3分),
又∵b1=
=2,
∴bn是首项为2,公差为1的等差数列.(4分)
(2)∵bn=2+(n-1)•1=n+1,
∴an=
=
=
-
,(6分)
∴Sn=(1-
)+(
-
)+…+(
-
)=1-
=
.
(3)证明:∵
=
=
<1,(9分)
∴(1-
)
=(
-
)
,
<2(
-
).(13分)
∴
(1-
)
<2[(
-
)+(
-
)+…+(
-
)]
=2(
-
)=2(
-
)<2(
-1).(16分)
| 1 |
| nan |
∴bn+1=
| 1 |
| (n+1)an+1 |
∵an+1=
| nan |
| (n+1)(nan+1) |
∴bn+1-bn=
| 1 |
| (n+1)an+1 |
| 1 |
| nan |
| 1 | ||
(n+1)
|
| 1 |
| nan |
=
| nan+1 |
| nan |
| 1 |
| nan |
又∵b1=
| 1 |
| a1 |
∴bn是首项为2,公差为1的等差数列.(4分)
(2)∵bn=2+(n-1)•1=n+1,
∴an=
| 1 |
| nbn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
(3)证明:∵
| Si |
| Si+1 |
| i(i+2) |
| (i+1)2 |
| i2+2i |
| i2+2i+1 |
∴(1-
| Si |
| Si+1 |
| 1 | ||
|
| 1 |
| Si |
| 1 |
| Si+1 |
| Si | ||
|
|
<2(
| 1 | ||
|
| 1 | ||
|
∴
| n |
| i=1 |
| Si |
| Si+1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
=2(
| 1 | ||
|
| 1 | ||
|
| 2 |
|
| 2 |
点评:本题主要考查了数列的基本性质以及数列与不等式的综合,考查了学生的计算能力和对数列的综合掌握,解题时注意整体思想和转化思想的运用,属于中档题.
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|