题目内容
设Sk=
+
+
+…+
,则Sk+1为( )
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
A、Sk+
| ||||
B、Sk+
| ||||
C、Sk+
| ||||
D、Sk+
|
分析:先利用Sk=
+
+
+…+
,表示出Sk+1,再进行整理即可得到结论.
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
解答:解:因为Sk=
+
+
+…+
,
所以sk+1=
+
+…+
+
+
=
+
+…+
+
+
-
=sk+
-
.
故选 C.
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
所以sk+1=
| 1 |
| (k+1)+1 |
| 1 |
| (k+1)+2 |
| 1 |
| 2(k+1)-2 |
| 1 |
| 2(k+1)-1 |
| 1 |
| 2(k+1) |
=
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| k+1 |
=sk+
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
故选 C.
点评:本题主要考查数列递推关系式,属于易错题,易错点在与整理过程中,不能清楚哪些项有,哪些项没有.
练习册系列答案
相关题目