题目内容
若函数f(x)=-x2+(a+2)x+2+b,log2f(1)=2,且g(x)=f(x)-2x为偶函数.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[m,+∞)的最大值为3-3m,求m的值.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[m,+∞)的最大值为3-3m,求m的值.
(1)因为log2f(1)=2,所以f(1)=4,即-1+a+2+2+b=4,即a+b=1.
又g(x)=f(x)-2x=-x2+(a+2)x+2+b-2x═-x2+ax+2+b,
因为g(x)=f(x)-2x为偶函数,所以a=0,解得b=1.
所以f(x)=-x2+2x+3.
(2)因为f(x)=-x2+2x+3=-(x-1)2+4,对称轴为x=1.
当m≥1,f(x)max=-m2+2m+3=3-3m,可得m=5.
当m<1,f(x)max=4=3-3m,可得m=-
.
综合得m=5或m=-
.
又g(x)=f(x)-2x=-x2+(a+2)x+2+b-2x═-x2+ax+2+b,
因为g(x)=f(x)-2x为偶函数,所以a=0,解得b=1.
所以f(x)=-x2+2x+3.
(2)因为f(x)=-x2+2x+3=-(x-1)2+4,对称轴为x=1.
当m≥1,f(x)max=-m2+2m+3=3-3m,可得m=5.
当m<1,f(x)max=4=3-3m,可得m=-
| 1 |
| 3 |
综合得m=5或m=-
| 1 |
| 3 |
练习册系列答案
相关题目
若函数f(x)(x∈R)为奇函数,且存在反函数f-1(x)(与f(x)不同),F(x)=
,则下列关于函数F(x)的奇偶性的说法中正确的是( )
| 2f(x)-2f-1(x) |
| 2f(x)+2f-1(x) |
| A、F(x)是奇函数非偶函数 |
| B、F(x)是偶函数非奇函数 |
| C、F(x)既是奇函数又是偶函数 |
| D、F(x)既非奇函数又非偶函数 |