题目内容
数列{an}的前n项和为Sn,已知Sn+an=-n(n∈N*)恒成立.
(1)求数列{an}的通项公式;
(2)bn=ln(an+1),求{anbn}的前n项和;
(3)求证:
+
+…+
<2.
(1)求数列{an}的通项公式;
(2)bn=ln(an+1),求{anbn}的前n项和;
(3)求证:
| 1 |
| 2a1a2 |
| 1 |
| 22a2a3 |
| 1 |
| 2nanan+1 |
(1)∵Sn+an=-n①
∴n≥2时,Sn-1+an-1=-n+1②
①-②可得2an=an-1-1
∴2(an+1)=an-1+1
又a1=-
,∴{an+1}是以
为首项,
为公比的等比数列
∴an+1=(
)n,∴an=(
)n-1;
(2)bn=ln(an+1)=nln
,∴anbn=[(
)n-1]•nln
,
∴{anbn}的前n项和为ln
[
+2•(
)2+…+n•(
)n]-
•ln
令Tn=ln
[
+2•(
)2+…+n•(
)n],则
Tn=ln
[(
)2+2•(
)3+…+(n-1)•(
)n+n•(
)n+1],
两式相减,可得Tn=ln
(2-
-
)
∴{anbn}的前n项和为ln
(2-
-
)-
•ln
;
(3)证明:由(1)知,
=-2(
-
)
∴
+
+…+
=-2(
-
+
-
+…+
-
)
=-2(
-
)<2
∴
+
+…+
<2.
∴n≥2时,Sn-1+an-1=-n+1②
①-②可得2an=an-1-1
∴2(an+1)=an-1+1
又a1=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an+1=(
| 1 |
| 2 |
| 1 |
| 2 |
(2)bn=ln(an+1)=nln
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴{anbn}的前n项和为ln
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| n(n+1) |
| 2 |
| 1 |
| 2 |
令Tn=ln
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减,可得Tn=ln
| 1 |
| 2 |
| 1 |
| 2n-1 |
| n |
| 2n |
∴{anbn}的前n项和为ln
| 1 |
| 2 |
| 1 |
| 2n-1 |
| n |
| 2n |
| n(n+1) |
| 2 |
| 1 |
| 2 |
(3)证明:由(1)知,
| 1 |
| 2nanan+1 |
| 1 | ||
|
| 1 | ||
|
∴
| 1 |
| 2a1a2 |
| 1 |
| 22a2a3 |
| 1 |
| 2nanan+1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
=-2(
| 1 | ||
|
| 1 | ||
|
∴
| 1 |
| 2a1a2 |
| 1 |
| 22a2a3 |
| 1 |
| 2nanan+1 |
练习册系列答案
相关题目