题目内容
函数
在区间
上至少取得
个最大值,则正整数
的最小值是( )
A.
B.
C.
D.![]()
【答案】
C
【解析】
试题分析:先根据函数的解析式求得函数的最小正周期,进而依据题意可推断出在区间上至少有
个周期.进而求得n≥6×
,求得n的最小值.根据题意,由于函数
的周期为
在区间[0,n]上至少取得2个最大值,说明在区间上至少有
个周期.所以,n≥
∴正整数n的最小值是8故答案为C
考点:三角函数的周期性
点评:本题主要考查了三角函数的周期性及其求法.考查了考生对三角函数周期性的理解和灵活利用
练习册系列答案
相关题目
(08年福州质检二)已知函数
在区间
上至少取得2次最大值,则正整数
的最小值是( )
|