题目内容
(本小题满分14分)
如图,矩形
中,
,
,
![]()
为
上的点,且
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求三棱锥
的体积.
(本题满分14分)
解:(Ⅰ)证明:![]()
平面
,
.
∴
平面
,则
. …… (2分)
又![]()
平面
,则
.
∴
平面
. ……………… (4分)
(Ⅱ)证明:依题意可知:
是
中点.
![]()
平面
,则
,而
.
∴
是
中点. ……………………………………………………………………(6分)
在
中,
,∴
平面
. …………………………………(8分)
(Ⅲ)解法一:![]()
平面
,∴
,而
平面
.
∴
平面
,∴
平面
. ………………………………………(9分)
![]()
是
中点,∴
是
中点.∴![]()
且
.
![]()
平面
,∴
. …………………………………………(10分)
∴
中,
.∴
. ……(11分)
∴
. ………………………………………(12分)
解法二:
. ……(12分)
练习册系列答案
相关题目