ÌâÄ¿ÄÚÈÝ
ÉèF1¡¢F2·Ö±ðΪÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã£®
£¨1£©ÈôÍÖÔ²CÉϵĵãA£¨1£¬
£©µ½F1¡¢F2Á½µãµÄ¾àÀëÖ®ºÍµÈÓÚ4£¬Ð´³öÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê£»
£¨2£©ÉèµãKÊÇ£¨1£©ÖÐËùµÃÍÖÔ²Éϵ͝µã£¬ÇóÏß¶ÎF1KµÄÖеãµÄ¹ì¼£·½³Ì£»
£¨3£©ÒÑÖªÍÖÔ²¾ßÓÐÐÔÖÊ£ºÈôM¡¢NÊÇÍÖÔ²CÉϹØÓÚÔµã¶Ô³ÆµÄÁ½¸öµã£¬µãPÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬µ±Ö±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPM¡¢kPNʱ£¬ÄÇôkPMÓëkPNÖ®»ýÊÇÓëµãPλÖÃÎ޹صֵ͍£®ÊÔ¶ÔË«ÇúÏß
-
=1д³ö¾ßÓÐÀàËÆÌØÐÔµÄÐÔÖÊ£¬²¢¼ÓÒÔÖ¤Ã÷£®
| x2 |
| a2 |
| y2 |
| b2 |
£¨1£©ÈôÍÖÔ²CÉϵĵãA£¨1£¬
| 3 |
| 2 |
£¨2£©ÉèµãKÊÇ£¨1£©ÖÐËùµÃÍÖÔ²Éϵ͝µã£¬ÇóÏß¶ÎF1KµÄÖеãµÄ¹ì¼£·½³Ì£»
£¨3£©ÒÑÖªÍÖÔ²¾ßÓÐÐÔÖÊ£ºÈôM¡¢NÊÇÍÖÔ²CÉϹØÓÚÔµã¶Ô³ÆµÄÁ½¸öµã£¬µãPÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬µ±Ö±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPM¡¢kPNʱ£¬ÄÇôkPMÓëkPNÖ®»ýÊÇÓëµãPλÖÃÎ޹صֵ͍£®ÊÔ¶ÔË«ÇúÏß
| x2 |
| a2 |
| y2 |
| b2 |
·ÖÎö£º£¨1£©ÍÖÔ²CµÄ½¹µãÔÚxÖáÉÏ£¬ÓÉÍÖÔ²ÉϵĵãAµ½F1¡¢F2Á½µãµÄ¾àÀëÖ®ºÍÊÇ4£¬¸ù¾ÝÍÖÔ²µÄ¶¨Òå¿ÉµÃ2a=4£¬¼´a=2£®ÀûÓõãA£¨1£¬
£©ÔÚÍÖÔ²ÉÏ£¬¿ÉÇóµÃb2=3£¬´Ó¶ø¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÏÈÀûÓÃÖеã×ø±ê¹«Ê½ÇóµÃ¶¯µãÓëF1KÖ®¼ä×ø±ê¹ØÏµ£¬ÀûÓö¯µãÔÚÍÖÔ²ÉÏ£¬¿ÉÇóÖеãµÄ¹ì¼£·½³Ì£®
£¨3£©ÉèµãMµÄ×ø±êΪ£¨m£¬n£©£¬ÔòµãNµÄ×ø±êΪ£¨-m£¬-n£©£¬½ø¶ø¿ÉÖª
-
=1¡¢ÓÖÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬±íʾ³öÖ±ÏßPMºÍPNµÄбÂÊ£¬ÇóµÄÁ½Ö±ÏßбÂʳ˻ýµÄ±í´ïʽ£¬°ÑyºÍxµÄ±í´ïʽ´úÈë·¢ÏÖ½á¹ûÓëpÎ޹أ®
| 3 |
| 2 |
£¨2£©ÏÈÀûÓÃÖеã×ø±ê¹«Ê½ÇóµÃ¶¯µãÓëF1KÖ®¼ä×ø±ê¹ØÏµ£¬ÀûÓö¯µãÔÚÍÖÔ²ÉÏ£¬¿ÉÇóÖеãµÄ¹ì¼£·½³Ì£®
£¨3£©ÉèµãMµÄ×ø±êΪ£¨m£¬n£©£¬ÔòµãNµÄ×ø±êΪ£¨-m£¬-n£©£¬½ø¶ø¿ÉÖª
| m2 |
| a2 |
| n2 |
| b2 |
½â´ð£º½â£º£¨1£©ÍÖÔ²CµÄ½¹µãÔÚxÖáÉÏ£¬ÓÉÍÖÔ²ÉϵĵãAµ½F1¡¢F2Á½µãµÄ¾àÀëÖ®ºÍÊÇ4£¬µÃ2a=4£¬¼´a=2£®
ÓÖµãA£¨1£¬
£©ÔÚÍÖÔ²ÉÏ£¬Òò´Ëb2=3£¬ÓÚÊÇc2=1£®
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
+
=1£¬½¹µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©£®
£¨2£©ÉèÍÖÔ²CÉϵ͝µãΪK£¨x1£¬y1£©£¬Ïß¶ÎF1KµÄÖеãQ£¨x£¬y£©£¬¡àx1=2x+1£¬y1=2y£®
Òò´Ë
+
=1£®¼´(x+
)2+
=1ΪËùÇóµÄ¹ì¼£·½³Ì£®
£¨3£©ÀàËÆµÄÐÔÖÊΪÈôMNÊÇË«ÇúÏß
-
=1ÉϹØÓÚÔµã¶Ô³ÆµÄÁ½¸öµã£¬
µãPÊÇË«ÇúÏßÉÏÈÎÒâÒ»µã£¬µ±Ö±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ£¬
²¢¼ÇΪkPM¡¢kPNʱ£¬ÄÇôkPMÓëkPNÖ®»ýÊÇÓëµãPλÖÃÎ޹صֵ͍£®
ÉèµãMµÄ×ø±êΪ£¨m£¬n£©£¬ÔòµãNµÄ×ø±êΪ£¨-m£¬-n£©£¬
ÆäÖÐ
-
=1¡¢ÓÖÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬
ÓÉkPM=
£¬kPN=
£¬
µÃkPM•kPN=
•
=
£¬
½«y2=
x2-b2£¬n2=
m2-b2£¬´úÈëµÃkPM•kPN=
£®
ÓÖµãA£¨1£¬
| 3 |
| 2 |
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©ÉèÍÖÔ²CÉϵ͝µãΪK£¨x1£¬y1£©£¬Ïß¶ÎF1KµÄÖеãQ£¨x£¬y£©£¬¡àx1=2x+1£¬y1=2y£®
Òò´Ë
| (2x+1)2 |
| 4 |
| (2y)2 |
| 3 |
| 1 |
| 2 |
| 4y2 |
| 3 |
£¨3£©ÀàËÆµÄÐÔÖÊΪÈôMNÊÇË«ÇúÏß
| x2 |
| a2 |
| y2 |
| b2 |
µãPÊÇË«ÇúÏßÉÏÈÎÒâÒ»µã£¬µ±Ö±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ£¬
²¢¼ÇΪkPM¡¢kPNʱ£¬ÄÇôkPMÓëkPNÖ®»ýÊÇÓëµãPλÖÃÎ޹صֵ͍£®
ÉèµãMµÄ×ø±êΪ£¨m£¬n£©£¬ÔòµãNµÄ×ø±êΪ£¨-m£¬-n£©£¬
ÆäÖÐ
| m2 |
| a2 |
| n2 |
| b2 |
ÓÉkPM=
| y-n |
| x-m |
| y+n |
| x+m |
µÃkPM•kPN=
| y-n |
| x-m |
| y+n |
| x+m |
| y2-n2 |
| x2-m2 |
½«y2=
| b2 |
| a2 |
| b2 |
| a2 |
| b2 |
| a2 |
µãÆÀ£º±¾ÌâÒÔÍÖÔ²ÎªÔØÌ壬¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²é´úÈë·¨Çó¹ì¼£·½³Ì£¬¿¼²éÁËÔ²×¶ÇúÏߵĹ²Í¬ÌØÕ÷£®¿¼²éÁËѧÉú×ۺϷÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿