题目内容
已知等差数列{an}各项都不相同,前3项和为18,且a1、a3、a7成等比数列
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=2,求数列{
}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=2,求数列{
| 1 |
| bn |
(1)依题意,得
a1+a2+a3=18,即3a2=18,解得a2=6
设数列{an}的公差为d,可知d≠0
可得a32=a1a7,即(6+d)2=(6-d)(6+5d)
解之得 d=2
∴an=a2+(n-2)d=2(n+1),即数列{an}的通项公式为an=2(n+1);
(2)由已知bn+1-bn=an
∴当n≥2时,bn-bn-1=an-1=2n,所以可知
以上各式进行累加,可得bn=2(1+2+3+…+n)=n(n+1)
又∵b1=2=1×(1+1),也满足bn=n(n+1)
∴可知当n∈N*时,bn=n(n+1)
因此
=
=
-
,
可得Tn=(1-
)+(
-
)+…+(
-
)=1-
=
.
a1+a2+a3=18,即3a2=18,解得a2=6
设数列{an}的公差为d,可知d≠0
可得a32=a1a7,即(6+d)2=(6-d)(6+5d)
解之得 d=2
∴an=a2+(n-2)d=2(n+1),即数列{an}的通项公式为an=2(n+1);
(2)由已知bn+1-bn=an
∴当n≥2时,bn-bn-1=an-1=2n,所以可知
|
以上各式进行累加,可得bn=2(1+2+3+…+n)=n(n+1)
又∵b1=2=1×(1+1),也满足bn=n(n+1)
∴可知当n∈N*时,bn=n(n+1)
因此
| 1 |
| bn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
可得Tn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
练习册系列答案
相关题目