题目内容

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)求函数M(x)=
f(x)+g(x)-|f(x)-g(x)|
2
的最大值;
(2)如果对f(x2)f(
x
)>kg(x)中的任意x∈[1,4],不等式恒成立,求实数k的取值范围.
(1)f(x)-g(x)=3(1-log2x),
当x>2时,f(x)<g(x);当0<x≤2时,f(x)≥g(x),
∴M(x)=
3-2log2x,x>2
log2x,0<x≤2

当0<x≤2时,M(x)的最大值为1;当x>2时,M(x)<1.
综上:当x=2时,M(x)取到最大值为1.
(2)由f(x2)f(
x
)>kg(x)得:(3-4log2x)(3-log2x)>k•log2x,
令t=log2x,∵x∈[1,4],∴t∈[0,2],
∴(3-4t)(3-t)>kt对一切t∈[0,2]恒成立.
①当t=0时,k∈R;
②当t∈(0,2]时,k<
(3-4t)(3-t)
t
恒成立,即k<4t+
9
t
-15,
∵4t+
9
t
≥12,当且仅当4t=
9
t
,即t=
3
2
时取等号.
∴4t+
9
t
-15的最小值为-3,∴k<-3.
综上k的取值范围是k<-3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网