题目内容
已知函数f(x)=lg(ax-bx)+x中,常数a、b满足a>1>b>0,且a=b+1,那么f(x)>1的解集为( )
| A.(0,1) | B.(1,+∞) | C.(1,10) | D.(10,+∞) |
由ax-bx>0即(
)x>1解得x>0,所以函数f(x)的定义域为(0,+∞),
因为a>1>b>0,所以ax递增,-bx递增,所以t=ax-bx递增,
又y=lgt递增,所以f(x)=lg(ax-bx)+x为增函数,
而f(1)=lg(a-b)+1=lg1+1=1,所以x>1时f(x)>1,
故f(x)>1的解集为(1,+∞).
故选B.
| a |
| b |
因为a>1>b>0,所以ax递增,-bx递增,所以t=ax-bx递增,
又y=lgt递增,所以f(x)=lg(ax-bx)+x为增函数,
而f(1)=lg(a-b)+1=lg1+1=1,所以x>1时f(x)>1,
故f(x)>1的解集为(1,+∞).
故选B.
练习册系列答案
相关题目