题目内容
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求二面角B-A1E-C余弦值的大小.
分析:(I)BC⊥AC,根据A1D⊥底ABC,得到A1D⊥BC,A1D∩AC=D,所以BC⊥面A1AC,从而BC⊥AC1,又因BA1⊥AC1,BA1∩BC=B,根据线面垂直的判定定理可知AC1⊥底A1BC;
(II)由(I)知AC1⊥A1C,ACC1A1为菱形,从而可得△A1AE≌△A1CE.作AF⊥A1E于F,连CF,则CF⊥A1E,故∠AFC为二面角A-A1E-C的平面角,从而可求二面角B-A1E-C余弦值的大小.
(II)由(I)知AC1⊥A1C,ACC1A1为菱形,从而可得△A1AE≌△A1CE.作AF⊥A1E于F,连CF,则CF⊥A1E,故∠AFC为二面角A-A1E-C的平面角,从而可求二面角B-A1E-C余弦值的大小.
解答:证明:(I)∠BCA=90°得BC⊥AC,
因为A1D⊥底ABC,所以A1D⊥BC,
因为A1D∩AC=D,所以BC⊥面A1AC,
所以BC⊥AC1,
因为BA1⊥AC1,BA1∩BC=B,
所以AC1⊥底A1BC
(II)由(I)知AC1⊥A1C,ACC1A1为菱形,
∴∠A1AC=60°AA1=AC=A1C=2,
又CE=EA,故△A1AE≌△A1CE.
作AF⊥A1E于F,连CF,则CF⊥A1E,
故∠AFC为二面角A-A1E-C的平面角,
∵A1E=
=2,AF=CF=
=
∴cos∠AFC=
=-
.
故二面角B-A1E-C余弦值的大小
.
因为A1D⊥底ABC,所以A1D⊥BC,
因为A1D∩AC=D,所以BC⊥面A1AC,
所以BC⊥AC1,
因为BA1⊥AC1,BA1∩BC=B,
所以AC1⊥底A1BC
(II)由(I)知AC1⊥A1C,ACC1A1为菱形,
∴∠A1AC=60°AA1=AC=A1C=2,
又CE=EA,故△A1AE≌△A1CE.
作AF⊥A1E于F,连CF,则CF⊥A1E,
故∠AFC为二面角A-A1E-C的平面角,
∵A1E=
| A1D2+DE2 |
AE•
| ||||
| A1E |
| ||
| 4 |
∴cos∠AFC=
| AF2+CF2-AC2 |
| 2AF•CF |
| 1 |
| 7 |
故二面角B-A1E-C余弦值的大小
| 1 |
| 7 |
点评:本题主要考查了线面垂直的判定,以及面面角等有关知识,同时考查了数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,属于中档题
练习册系列答案
相关题目