题目内容
△ABC中,角A,B的对边分别为a,b,则“cos A>cos B”是“a<b”成立的( )
| A.充分不必要条件 | B.必要不充分条件 |
| C.充要条件 | D.既不充分也不必要条件 |
(1)∵a、b分别是角A、B所对的边,且a<b,∴0<∠A<∠B<π.
而在(0,π)上,函数f(x)=cosx为减函数.
∴cosA>cosB成立.
(2)在(0,π)上,函数f(x)=cosx为减函数,0<∠A,∠B<π,cosA>cosB,
∴∠A<∠B,从而a<b.
所以前者是后者的充要条件.
故选C.
而在(0,π)上,函数f(x)=cosx为减函数.
∴cosA>cosB成立.
(2)在(0,π)上,函数f(x)=cosx为减函数,0<∠A,∠B<π,cosA>cosB,
∴∠A<∠B,从而a<b.
所以前者是后者的充要条件.
故选C.
练习册系列答案
相关题目