题目内容
(2006•静安区二模)已知无穷等比数列{an}(n为正整数)的首项a1=
,公比q=
.设Tn=a12+a32+…+a2n-12,则
Tn=
.
| 1 |
| 2 |
| 1 |
| 2 |
| lim |
| n→+∞ |
| 4 |
| 15 |
| 4 |
| 15 |
分析:由题意求得an=
×(
)n-1=(
)n,利用等比数列的求和公式求得Tn =
[1-(
)n],再利用数列极限的运算法则求得
Tn 的值.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 4 |
| 15 |
| 1 |
| 16 |
| lim |
| n→+∞ |
解答:解:由题意可得an=
×(
)n-1=(
)n,
Tn=a12+a32+…+a2n-12 =
+(
)3+(
)5+…+(
)2n-1=
=
[1-(
)n],
故有
Tn=
[1-(
)n]=
,
故答案为
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
Tn=a12+a32+…+a2n-12 =
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| ||||
1-
|
| 4 |
| 15 |
| 1 |
| 16 |
故有
| lim |
| n→+∞ |
| lim |
| n→∞ |
| 4 |
| 15 |
| 1 |
| 16 |
| 4 |
| 15 |
故答案为
| 4 |
| 15 |
点评:本题主要考查等比数列的求和公式、数列极限的运算法则的应用,属于中档题.
练习册系列答案
相关题目