题目内容
(本题满分16分)已知函数
。
(Ⅰ)利用函数单调性的定义证明函数
在
上是单调增函数;
(Ⅱ)证明方程
在区间
上有实数解;
(Ⅲ)若
是方程
的一个实数解,且
,求整数
的值。
【答案】
(Ⅰ)利用单调性的定义证明 6分
(Ⅱ)令
,
由
,且
的图象在
是不间断的,
方程
在
有实数解。
11分
(Ⅲ)令
,
由
,且
的图象在
是不间断的,
方程
在
有实数解,而
,故整数
。 16分
【解析】略
练习册系列答案
相关题目