题目内容

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),A、B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明-
a2-b2
a
x0
a2-b2
a
分析:设A、B的坐标分别为(x1,y1)和(x2,y2).因线段AB的垂直平分线与x轴相交,故AB不平行于y轴,即x1≠x2.又交点为P(x0,0),故|PA|=|PB|.把点P坐标代入,同时把A、B代入椭圆方程,最后联立方程即可得到x0关于x1和x2的关系式,最后根据x1和x2的范围确定x0的范围.
解答:证明:设A、B的坐标分别为(x1,y1)和(x2,y2).因线段AB的垂直平分线与x轴相交,故AB不平行于y轴,即x1≠x2.又交点为P(x0,0),故|PA|=|PB|,即
(x1-x02+y12=(x2-x02+y22
∵A、B在椭圆上,
y
2
1
=b2-
b2
a2
x
2
1
y
2
2
=b2-
b2
a2
x
2
2

将上式代入①,得
2(x2-x1)x0=(
x
2
2
-
x
2
1
)
a2-b2
a2

∵x1≠x2,可得x0=
x1+x2
2
a2-b2
a2
.③
∵-a≤x1≤a,-a≤x2≤a,且x1≠x2
∴-2a<x1+x2<2a,
-
a2-b2
a
x0
a2-b2
a
点评:本小题考查椭圆性质、直线方程等知识,以及综合分析能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网