题目内容
将1,2,3……,20这二十个数分成甲,乙两组,使甲组各数的平均数比乙组各数的平均数大1,且甲,乙两组的平均数均为正整数,则甲组有 ▲ 个数.
10
(09 年聊城一模理)(12分)
某校有一贫困学生因病需手术治疗,但现在还差手术费万元,团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动.凡捐款10元者,享受一次摇奖机会,如图是摇奖机的结构示意图,摇奖机的旋转盘是均匀的,扇形区域所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值分别为5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域,可获得价值3元的学习用品).
(Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去
购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?
(II)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价
值6元的学习用品的概率.
A.F(6)=F(5),F(5)=F(4),F(4)=F(3),F(3)=0
B.F(3)=F(4),F(4)=F(5),F(5)=F(6),F(3)=0
C.F(3)=0,F(6)=F(5),F(5)=F(4),F(4)=F(3)
D.F(3)=0,F(4)=F(5),F(5)=F(6),F(4)=F(3)
(Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?
(II)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价值6元的学习用品的概率.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(I)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;
(II)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n.若以 作为点P的坐标,求点P落在区域内的概率.
【解析】第一问利用古典概型概率求解所有的基本事件数共12种,然后利用方程有实根,则满足△=4a2-4b2≥0,即a2≥b2。,这样求得事件发生的基本事件数为6种,从而得到概率。第二问中,利用所有的基本事件数为16种。即基本事件(m,n)有:(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)共16种。在求解满足的基本事件数为(1,1) (2,1) (2,2) (3,1) 共4种,结合古典概型求解得到概率。
(1)基本事件(a,b)有:(1,2) (1,3) (1,4) (2,1) (2,3) (2,4) (3,1) (3,2) (3,4) (4,1) (4,2) (4,3)共12种。
∵有实根, ∴△=4a2-4b2≥0,即a2≥b2。
记“有实根”为事件A,则A包含的事件有:(2,1) (3,1) (3,2) (4,1) (4,2) (4,3) 共6种。
∴PA.= 。 …………………6分
(2)基本事件(m,n)有:(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)共16种。
记“点P落在区域内”为事件B,则B包含的事件有:
(1,1) (2,1) (2,2) (3,1) 共4种。∴PB.=