题目内容
(本小题满分12分)已知p:|1-![]()
|≤2,q:x2-2x+1-m2≤0(m>0),若
p
是
q的必要而不充分条件,求实数m的取值范围.
解:由题意知,命题
若
p是
q的必要而不充分条件的等价命题即逆否命题为:
p是q的充分不必要条件
----------2分
p:|1-
|≤2
-2≤
-1≤2
-1≤
≤3
-2≤x≤10 -------4分
q::x2-2x+
1-m2≤0
[x-(1-m)][x-(1+m)]≤0 ----------6分
∵p是q的充分不必要条件,![]()
∴不等式|1-
|≤2的解集是x2-2x+1-m2≤0(m>0)解集的子集
--------8分
又∵m>0
∴不等式*的解集为1-m≤x≤1+m
∴
,∴m≥9,
∴实数m的取值范围是[
9,+∞![]()
![]()
--------------12分![]()
解析
练习册系列答案
相关题目
已知函数
,定义如下:当
时,
( ).
| A.有最大值1,无最小值 | B.有最小值0,无最大值 |
| C.有最小值—1,无最大值 | D.无最小值,也无最大值 |