题目内容
设数列{an}的前n项和为sn,a1=1,an=
+2(n-1),(n∈N*),若s1+
+
+…+
-(n-1)2=2013,则n的值为( )
| sn |
| n |
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
| A.1007 | B.1006 | C.2012 | D.2013 |
∵an=
+2(n-1),
∴sn-sn-1=
+2(n-1),(n≥2)
整理可得,(n-1)sn-nsn-1=2n(n-1)
两边同时除以n(n-1)可得
-
=2
∴数列{
}是以
=1为首项,以2为公差的等差数列
∴s1+
+
+…+
-(n-1)2
=n×1+
×2-(n-1)2
=n2-(n-1)2
=2n-1
由题意可得,2n-1=2013
解可得n=1007
故选A
| sn |
| n |
∴sn-sn-1=
| sn |
| n |
整理可得,(n-1)sn-nsn-1=2n(n-1)
两边同时除以n(n-1)可得
| sn |
| n |
| sn-1 |
| n-1 |
∴数列{
| sn |
| n |
| s1 |
| 1 |
∴s1+
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
=n×1+
| n(n-1) |
| 2 |
=n2-(n-1)2
=2n-1
由题意可得,2n-1=2013
解可得n=1007
故选A
练习册系列答案
相关题目