题目内容
已知函数
(其中x∈R,A>0,ω>0)的最大值为2,最小正期为8.
(1)求函数f(x)的解析式;
(2)若函数f(x)图象上的两点P,Q的横坐标依次为2,4,O为坐标原点,求cos∠POQ的值.
解:(1)由题意可得 A=2,T=
=8,解得ω=
,
故函数f(x)=2sin(
x+
).
(2)∵函数f(x)图象上的两点P,Q的横坐标依次为2,4,O为坐标原点,
∵f(2)=2sin(
)=2cos
=
,f(4)=2sin(
)=-2sin
=-
,
∴P(2,
)、Q(4,-
),|OP|=
,|PQ|=2
,|OQ|=3
,
∴cos∠POQ=
=
=
.
分析:(1)由函数的最值求出A,由周期求出ω,从而得到函数的解析式.
(2)根据条件求得P和 Q的坐标,|OP|、|PQ|、|OQ|的值,再利用余弦定理求得cos∠POQ.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,余弦定理的应用,属于中档题.
故函数f(x)=2sin(
(2)∵函数f(x)图象上的两点P,Q的横坐标依次为2,4,O为坐标原点,
∵f(2)=2sin(
∴P(2,
∴cos∠POQ=
分析:(1)由函数的最值求出A,由周期求出ω,从而得到函数的解析式.
(2)根据条件求得P和 Q的坐标,|OP|、|PQ|、|OQ|的值,再利用余弦定理求得cos∠POQ.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,余弦定理的应用,属于中档题.
练习册系列答案
相关题目