题目内容
(2012•江苏一模)设数列{an}的各项均为正数.若对任意的n∈N+,存在k∈N+,使得
=an•an+2k成立,则称数列为“Jk型”数列.
(1)若数列{an}是“J2”型数列,且a2=8,a8=1,求a2n;
(2)若数列{an}既是“J3”型数列,又是“J4”型数列,证明:数列{an}是等比数列.
| a | 2 n+k |
(1)若数列{an}是“J2”型数列,且a2=8,a8=1,求a2n;
(2)若数列{an}既是“J3”型数列,又是“J4”型数列,证明:数列{an}是等比数列.
分析:(1)利用数列{an}是“J2”型数列,可得数列{an}的奇数项、偶数项分别组成等比数列,根据a2=8,a8=1,求出数列的公比,即可得到通项;
(2)由题设知,当n≥8时,an-6,an-3,an,an+3,an+6成等比数列;an-6,an-2,an+2,an+6也成等比数列,可得
=
,进而可得
=
,
=q对任意n≥2都成立,由此可得数列{an}为等比数列.
(2)由题设知,当n≥8时,an-6,an-3,an,an+3,an+6成等比数列;an-6,an-2,an+2,an+6也成等比数列,可得
| an+2 |
| an |
| an |
| an-2 |
| an+1 |
| an |
| an |
| an-1 |
| an+1 |
| an |
解答:解:(1)∵数列{an}是“J2”型数列,
∴
=an•an+4
∴数列{an}的奇数项、偶数项分别组成等比数列
设偶数项组成的等比数列的公比为q,
∵a2=8,a8=1,∴q3=
,∴q=
∴a2n=8×(
)n-1=24-n;
(2)由题设知,当n≥8时,an-6,an-3,an,an+3,an+6成等比数列;an-6,an-2,an+2,an+6也成等比数列.
从而当n≥8时,an2=an-3an+3=an-6an+6,(*)且an-6an+6=an-2an+2.
所以当n≥8时,an2=an-2an+2,即
=
于是当n≥9时,an-3,an-1,an+1,an+3成等比数列,从而an-3an+3=an-1an+1,故由(*)式知an2=an-1an+1,
即
=
.
当n≥9时,设q=
,当2≤m≤9时,m+6≥8,从而由(*)式知am+62=amam+12,
故am+72=am+1am+13,从而
=
,
于是
=
=q.
因此
=q对任意n≥2都成立.
因为a42=a1a7,所以q2•
=
•
•
=
=
=
•
•
=q3,
于是
=q.
故数列{an}为等比数列.
∴
| a | 2 n+2 |
∴数列{an}的奇数项、偶数项分别组成等比数列
设偶数项组成的等比数列的公比为q,
∵a2=8,a8=1,∴q3=
| 1 |
| 8 |
| 1 |
| 2 |
∴a2n=8×(
| 1 |
| 2 |
(2)由题设知,当n≥8时,an-6,an-3,an,an+3,an+6成等比数列;an-6,an-2,an+2,an+6也成等比数列.
从而当n≥8时,an2=an-3an+3=an-6an+6,(*)且an-6an+6=an-2an+2.
所以当n≥8时,an2=an-2an+2,即
| an+2 |
| an |
| an |
| an-2 |
于是当n≥9时,an-3,an-1,an+1,an+3成等比数列,从而an-3an+3=an-1an+1,故由(*)式知an2=an-1an+1,
即
| an+1 |
| an |
| an |
| an-1 |
当n≥9时,设q=
| an |
| an-1 |
故am+72=am+1am+13,从而
| am+72 |
| am+62 |
| am+1am+13 |
| amam+12 |
于是
| am+1 |
| am |
| q2 |
| q |
因此
| an+1 |
| an |
因为a42=a1a7,所以q2•
| a2 |
| a1 |
| a4 |
| a3 |
| a3 |
| a2 |
| a2 |
| a1 |
| a4 |
| a1 |
| a7 |
| a4 |
| a7 |
| a6 |
| a6 |
| a5 |
| a5 |
| a4 |
于是
| a2 |
| a1 |
故数列{an}为等比数列.
点评:本题考查新定义,考查等比数列的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目