题目内容

已知函数f(x)=
a•2x-2+a
2x+1
(a∈R).
(1)试判断f(x)的单调性,并证明你的结论;
(2)若f(x)为定义域上的奇函数,
①求函数f(x)的值域;
②求满足f(ax)<f(2a-x2)的x的取值范围.
(本小题满分16分)
(1)函数f(x)为定义域(-∞,+∞),
f(x)=a-
2
2x+1

任取x1,x2∈(-∞,+∞),且x1<x2
f(x2)-f(x1)=a-
2
2x2+1
-a+
2
2x1+1
=
2(2x2-2x1)
(2x2+1)(2x1+1)
…(3分)
∵y=2x在R上单调递增,且x1<x2
0<2x12x22x2-2x1>02x1+1>02x2+1>0
∴f(x2)-f(x1)>0,
即f(x2)>f(x1),
∴f(x)在(-∞,+∞)上的单调增函数.…(5分)
(2)∵f(x)是定义域上的奇函数,∴f(-x)=-f(x),
a-
2
2-x+1
+(a-
2
2x+1
)=0
对任意实数x恒成立,
化简得2a-(
2•2x
2x+1
+
2
2x+1
)=0

∴2a-2=0,即a=1,…(8分)
(注:直接由f(0)=0得a=1而不检验扣2分)
①由a=1得f(x)=1-
2
2x+1

∵2x+1>1,∴0<
1
2x+1
<1
,…(10分)
-2<-
2
2x+1
<0
,∴-1<1-
2
2x+1
<1

故函数f(x)的值域为(-1,1).…(12分)
②由a=1,得f(x)<f(2-x2),
∵f(x)在(-∞,+∞)上单调递增,∴x<2-x2,…(14分)
解得-2<x<1,
故x的取值范围为(-2,1).…(16分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网