题目内容
在△ABC中,角A、B、C的对边分别为a、b、c,已知B=60°.
(Ⅰ)若cos(B+C)=-
,求cosC的值;
(Ⅱ)若a=5,
•
=5,求△ABC的面积.
(Ⅰ)若cos(B+C)=-
| 11 |
| 14 |
(Ⅱ)若a=5,
| AC |
| CB |
(本小题满分12分)
(Ⅰ)在△ABC中,由cos(B+C)=-
,得
sin(B+C)=
=
=
,
∴cosC=cos[(B+C)-B]=cos(B+C)cosB+sin(B+C)sinB
=-
×
+
×
=
;…(6分)
(Ⅱ)由
•
=5,得|
|•|
|cos(180°-C)=5,即abcosC=-5,
又a=5,∴bcosC=-1,①
由正弦定理
=
,得
=
,
∴
=
,
即
bcosC+bsinC=5
,②
将①代入②,得bsinC=6
,
则△ABC的面积为S=
absinC=
×5×6
=15
.…(12分)
(Ⅰ)在△ABC中,由cos(B+C)=-
| 11 |
| 14 |
sin(B+C)=
| 1-cos2(B+C) |
1-(-
|
5
| ||
| 14 |
∴cosC=cos[(B+C)-B]=cos(B+C)cosB+sin(B+C)sinB
=-
| 11 |
| 14 |
| 1 |
| 2 |
5
| ||
| 14 |
| ||
| 2 |
| 1 |
| 7 |
(Ⅱ)由
| AC |
| CB |
| AC |
| CB |
又a=5,∴bcosC=-1,①
由正弦定理
| a |
| sinA |
| b |
| sinB |
| a |
| sin(120°-C) |
| b |
| sin60° |
∴
| 5 | ||||||
|
| b | ||||
|
即
| 3 |
| 3 |
将①代入②,得bsinC=6
| 3 |
则△ABC的面积为S=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |