题目内容
随机变量ξ的分布律如下,其中a、b、c为等差数列,若
,则D(ξ)的值为
| ξ | -1 | 0 | 1 |
| P(ξ) | a | b | c |
- A.

- B.

- C.

- D.

B
分析:根据所给的离散型随机变量的分布列,端点三个概率之和等于1,期望值和三个数字成等差数列,得到三个方程,解方程组求出a,b c,做出方差.
解答:由题意知a+b+c=1 ①
-a+c=
,②
2b=a+c,③
由①②③得a=
,b=
,c=
,
∴D(ξ)=
故选B.
点评:本题考查离散型随机变量的期望与方差,本题解题的关键是正确利用概率的性质和期望值,写出满足条件的等式.
分析:根据所给的离散型随机变量的分布列,端点三个概率之和等于1,期望值和三个数字成等差数列,得到三个方程,解方程组求出a,b c,做出方差.
解答:由题意知a+b+c=1 ①
-a+c=
2b=a+c,③
由①②③得a=
∴D(ξ)=
故选B.
点评:本题考查离散型随机变量的期望与方差,本题解题的关键是正确利用概率的性质和期望值,写出满足条件的等式.
练习册系列答案
相关题目