题目内容
| AB |
| a |
| AC |
| b |
| AE |
| 3 |
| 4 |
| a |
| 1 |
| 4 |
| b |
| 3 |
| 4 |
| a |
| 1 |
| 4 |
| b |
| a |
| b |
分析:由CE=3EB,可得
=
.又由
=
-
,可得
=
+
=
+
.
| BE |
| 1 |
| 4 |
| BC |
| BC |
| AC |
| AB |
| AE |
| AB |
| BE |
| AB |
| 1 |
| 4 |
| BC |
解答:解:∵CE=3EB,∴
=
.
又∵
=
-
,
∴
=
+
=
+
=
+
(
-
)=
+
.
故答案为
+
.
| BE |
| 1 |
| 4 |
| BC |
又∵
| BC |
| AC |
| AB |
∴
| AE |
| AB |
| BE |
| AB |
| 1 |
| 4 |
| BC |
=
| a |
| 1 |
| 4 |
| b |
| a |
| 3 |
| 4 |
| a |
| 1 |
| 4 |
| b |
故答案为
| 3 |
| 4 |
| a |
| 1 |
| 4 |
| b |
点评:熟练掌握向量共线定理和三角形法则即可得出.
练习册系列答案
相关题目
| A、1 | ||||
B、
| ||||
C、
| ||||
D、
|