题目内容
21.已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N+.(Ⅰ)求{an}的通项公式;
(Ⅱ)设数列{bn}满足an(
-1)=1,并记Tn为{bn}的前n项和,求证:3Tn+1>log2(an+3),n∈N+.
(Ⅰ)解:由a1=S1=
(a1+1)(a1+2),解得a1=1或a1=2.由假设a1=S1>1,因此a1=2.
又由an+1=Sn+1=Sn=
(an+1+1)(an+1+2)
(an+1)(an+2),
得 (an+1+an)(an-1-an-3)=0,
即 an+3-an-3=0或an+1=-an,因an>0,故an+1=-an不成立,舍去
因此an+1-an=3,从而{an}是公差为3,首项为2的等差数列,故{an}的通项为an=3n-1.
(Ⅱ)证法一:由a
(2
-1)=1可解得
bn=log2(1+
)=log2
;
从而Tn=b1+b2+…+bn=log2(
·
·…·
).
因此3Tn+1-log2(an+3)-log2(
·
·…·
)3·
.
又 f(n)=(
·
·…·
)3·
,则
.
因(3n+3)3-(3n+5)(3n+2)2=9n+7>0,故
f(n+1)>f(n).
特别地f(n)≥f(1)=
>1,从而3Tn+1-log2(an+3)=log2f(n)>0,
即3Tn+1>log2(an+3).
证法二:同证法一求得bn及Tn.
由二项式定理知,当c>0时,不等式(1+c)3>1+3c成立.
因此不等式有
3Tn+1=log22(1+
)3(1+
)3…(1+
)3
>log22(1+
)(1+
)…(1+
)
=log22·
·
·…·
=log2(3n+2)=log2(an+3).证法三:同证法一求得bn及Tn.
令An=
·
·…·
,Bn=
·
·…·
,
Cn=
·
·…·
.
因
,因此A
>AnBnCn=
.
从而
3Tn+1=log22(
·
·…·
)2=log22A![]()
>log22AnBnCn=log2(3n+2)=log2(an+3).
证法四:同证法一求得bn及Tn.
下面用数学归纳法证明:3Tn+1>log2(an+3).
当n=1时,3T1+1=log2
,log2(a1+3)=log25,
因此3T1+1>log2(a1+3),结论成立.
假设结论当n=k时成立,即3T1+1>log2(a1+3),
则当n=k+1时,
3Tn+1+1-log2(an+1+3)=3Tn+1+3bn+1-log2(a2n+3)
>log2(an+3)-log2(an+1+3)+3bn+1
=log2![]()
因(3k+3)3-(3k+5)(3k+2)2=9k+7>0,故log2
>0.
从而3Tn+1+1>log2(an+1+3). 这就是说,当n=k+1时结论也成立.
综上3Tn+1>log2(an+3)对任何n∈N,成立.