题目内容
已知等比数列{an}中,a1+a3=10,a4+a6=| 5 |
| 4 |
(1)求数列{an}的通项公式;
(2)求证:
| lgan+1+lgan+2+…+lga2n |
| n2 |
| 3 |
| 2 |
分析:(1)先设公比为q,用a4+a6除以a1+a3正好等于q3进而求得q,进一步求得其首项,从而得到数列{an}的通项公式;
(2)利用(1)中数列{an}的通项公式,化简左边得
=
=
,再利用放缩法可证.
(2)利用(1)中数列{an}的通项公式,化简左边得
| lgan+1+lgan+2+…+lga2n |
| n2 |
| lgan+1an+2…a2n |
| n2 |
lg2
| ||
| n2 |
解答:解:(1)依题意,设公比为q,由于a1+a3=10,a4+a6=
,
所以q3=
,∴q=
,∴a1=8,
∴an=24-n;
(2)
=
=
>
>
-
>-
| 5 |
| 4 |
所以q3=
| a4+a6 |
| a1+a3 |
| 1 |
| 2 |
∴an=24-n;
(2)
| lgan+1+lgan+2+…+lga2n |
| n2 |
| lgan+1an+2…a2n |
| n2 |
lg2
| ||
| n2 |
| ||
| n2 |
| 7n |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
点评:本题主要考查求解数列{an}的通项公式,考查对数运算,同时借助于放缩法进行证明不等式,有一定的综合性.
练习册系列答案
相关题目