题目内容
已知函数f(x)=lnx,g(x)=
,设F(x)=f(x)+g(x).
(Ⅰ)当a=1时,求函数F(x)的单调区间;
(Ⅱ)若以函数y=F(x)(0<x≤3)图象上任意一点P(x0,y0)为切点的切线斜率k≤
恒成立,求实数a的最小值.
| a |
| x |
(Ⅰ)当a=1时,求函数F(x)的单调区间;
(Ⅱ)若以函数y=F(x)(0<x≤3)图象上任意一点P(x0,y0)为切点的切线斜率k≤
| 1 |
| 2 |
(Ⅰ)由已知a=1,可得F(x)=f(x)+g(x)=lnx+
,函数的定义域为(0,+∞),
则F′(x)=
-
=
由F′(x)=
-
=
>0可得F(x)在区间(1,+∞)上单调递增,
F′(x)=
-
=
<0得F(x)在(0,1)上单调递减;
(Ⅱ)由题意可知k=F′(x0)=
≤
对任意0<x0≤3恒成立,
即有x0-
≤a对任意0<x0≤3恒成立,即(x0-
)max≤a,
令t=x0-
=-
(
-2x0)=-
(x0-1)2+
≤
,
则a≥
,即实数a的最小值为
.
| 1 |
| x |
则F′(x)=
| 1 |
| x |
| 1 |
| x2 |
| x-1 |
| x2 |
由F′(x)=
| 1 |
| x |
| 1 |
| x2 |
| x-1 |
| x2 |
F′(x)=
| 1 |
| x |
| 1 |
| x2 |
| x-1 |
| x2 |
(Ⅱ)由题意可知k=F′(x0)=
| x0-a | ||
|
| 1 |
| 2 |
即有x0-
| 1 |
| 2 |
| x | 20 |
| 1 |
| 2 |
| x | 20 |
令t=x0-
| 1 |
| 2 |
| x | 20 |
| 1 |
| 2 |
| x | 20 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
则a≥
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目