题目内容
已知数列{an}满足a1=2,an+1=| 2an | an+2 |
(1)求数列{an}的通项公式;
(2)设bn=anan+1,Sn=b1+b2+…+bn,若Sn-(n+9)a<0对一切n∈N*都成立,求a的取值范围.
分析:(1)两边取倒数,有
-
=
,从而可求数列{an}的通项公式;
(2)由bn=anan+1得bn=4(
-
),从而可求Sn,问题可转化为
<(n+9)a 恒成立,通过分离参数,用最值法求得a的取值范围.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 2 |
(2)由bn=anan+1得bn=4(
| 1 |
| n |
| 1 |
| n+1 |
| 4n |
| n+1 |
解答:解:(1)由an+1=
得
=
=
+
,设
=
+(n-1) •
,故 an=
(2)∵bn=anan+1=
•
=4(
-
)
∴Sn=b1+b2+…+bn=4[(1-
)+(
-
)+…+(
-
)]=4(1-
)=
不等式Sn-(n+9)a<0恒成立 ?
<(n+9)a 恒成立 ?a>[
]max
而
=
≤
=
∴a>
| 2an |
| an+2 |
| 1 |
| an+1 |
| an+2 |
| 2an |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
| 2 |
| n |
(2)∵bn=anan+1=
| 2 |
| n |
| 2 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=b1+b2+…+bn=4[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 4n |
| n+1 |
不等式Sn-(n+9)a<0恒成立 ?
| 4n |
| n+1 |
| 4n |
| (n+1)(n+9) |
而
| 4n |
| (n+1)(n+9) |
| 4 | ||
n+
|
| 4 | ||||
2
|
| 1 |
| 4 |
| 1 |
| 4 |
点评:本题主要考查构造新数列求数列的通项,考查裂项求和及恒成立问题的处理,属于中档题
练习册系列答案
相关题目