题目内容
已知集合A={0,1,2,3,4},集合B={x|x=2n,n∈A},则A∩B=( )
| A.{0} | B.{0,4} | C.{2,4} | D.{0,2,4} |
因为集合A={0,1,2,3,4},所以集合B={x|x=2n,n∈A}={0,2,4,6,8},
所以A∩B={0,1,2,3,4}∩{0,2,4,6,8}={0,2,4}.
故选D.
所以A∩B={0,1,2,3,4}∩{0,2,4,6,8}={0,2,4}.
故选D.
练习册系列答案
相关题目