题目内容


    ABC的内角A、B、C的对边分别为a、b、c,已知a=,b=,B=45o

(I)求角A、C;

(Ⅱ)求边c.


解  (Ⅰ)∵B=45°<90°且asinB<ba,∴△ABC有两解.

由正弦定理得sinA== =,

则A为60°或120°.                                 

                                                                                                                                                   

(Ⅱ)①当A=60°时,C=180°-(A+B)=75°,

c====.          

②当A=120°时,C=180°-(A+B)=15°,

c====.             

故在△ABC中,A=60°,C=75°,c=或A=120°,C=15°,c=.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网