题目内容
已知A,B,C是三角形△ABC三内角,向量| m |
| 3 |
| n |
| m |
| n |
(1)求角A;(2)若tanB=
| 1 |
| 2 |
| 1+sin2B |
| cos2B-sin2B |
分析:(1)首先由平面向量数量积坐标公式得A的三角等式,然后利用正弦的差角公式进行化简,最后由特殊角三角函数值解之;
(2)利用正弦的倍角公式、同角正余弦关系式及弦切互化公式把代数式转化为tanB的形式即可.
(2)利用正弦的倍角公式、同角正余弦关系式及弦切互化公式把代数式转化为tanB的形式即可.
解答:解:(1)∵
•
=1∴(-1,
)•(cosA,sinA)=1,
即
sinA-cosA=1,2(sinA•
-cosA•
)=1,
∴sin(A-
)=
,
∵0<A<π∴-
<A-
<
∴A-
=
∴A=
.
(2)由题知
=
=
=
=3.
| m |
| n |
| 3 |
即
| 3 |
| ||
| 2 |
| 1 |
| 2 |
∴sin(A-
| π |
| 6 |
| 1 |
| 2 |
∵0<A<π∴-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴A-
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
(2)由题知
| 1+sin2B |
| cos2B-sin2B |
| (sinB+cosB)2 |
| cos2B-sin2B |
| sinB+cosB |
| cosB-sinB |
| 1+tanB |
| 1-tanB |
点评:本题考查平面向量数量积坐标运算、三角函数有关公式及特殊角三角函数值,同时考查转化思想.
练习册系列答案
相关题目