题目内容
设![]()
(1)求
,并求数列
的通项公式.
(2)已知函数
在
上为减函数,设数列
的前
的和为
,
求证:![]()
【答案】
(1)
,(2)利用函数的单调性证明不等式
【解析】
试题分析:
3分
![]()
是首项为
,公比为
的等比数列,
,……6分
(2)![]()
……9分
,
在
上为减函数,当
时,
……12分
考点:本题考查了数列通项公式的求法及不等式的证明
点评:数列与函数、方程、不等式的综合问题,要注意将其分解为数学分支中的问题来解决
练习册系列答案
相关题目
右表是某班英语及数学成绩的分布表,已知该班有50名学生,成绩分1至5个档次.如:表中所示英语成绩为4分,数学成绩为2分的学生有5人.现设该班任意一位学生的英语成绩为m,数学成绩为n.
(1)求m=4,n=3的概率;
(2)求在m≥3的条件下,n=3的概率;
(3)求a+b的值,并求m的数学期望;
(4)若m=2与n=4是相互独立的,求a,b的值.
| n m |
数 学 | |||||
| 5 | 4 | 3 | 2 | 1 | ||
| 英 语 |
5 | 1 | 3 | 1 | 0 | 1 |
| 4 | 1 | 0 | 7 | 5 | 1 | |
| 3 | 2 | 1 | 0 | 9 | 3 | |
| 2 | 1 | b | 6 | 0 | a | |
| 1 | 0 | 0 | 1 | 1 | 3 | |
(2)求在m≥3的条件下,n=3的概率;
(3)求a+b的值,并求m的数学期望;
(4)若m=2与n=4是相互独立的,求a,b的值.
右表是某班英语及数学成绩的分布表,已知该班有50名学生,成绩分1至5个档次.如:表中所示英语成绩为4分,数学成绩为2分的学生有5人.现设该班任意一位学生的英语成绩为m,数学成绩为n.
(1)求m=4,n=3的概率;
(2)求在m≥3的条件下,n=3的概率;
(3)求a+b的值,并求m的数学期望;
(4)若m=2与n=4是相互独立的,求a,b的值.
| n m | 数 学 | |||||
| 5 | 4 | 3 | 2 | 1 | ||
| 英 语 | 5 | 1 | 3 | 1 | 1 | |
| 4 | 1 | 7 | 5 | 1 | ||
| 3 | 2 | 1 | 9 | 3 | ||
| 2 | 1 | b | 6 | a | ||
| 1 | 1 | 1 | 3 | |||
(2)求在m≥3的条件下,n=3的概率;
(3)求a+b的值,并求m的数学期望;
(4)若m=2与n=4是相互独立的,求a,b的值.