题目内容
对大于或等于2的自然数的正整数幂运算有如下分解方式:
22=1+3
32=1+3+5
42=1+3+5+7
23=3+5
33=7+9+11
43=13+15+17+19
根据上述分解规律,若m2=1+3+5+…+11,n3的分解中最小的正整数是21,则m+n=( )
22=1+3
32=1+3+5
42=1+3+5+7
23=3+5
33=7+9+11
43=13+15+17+19
根据上述分解规律,若m2=1+3+5+…+11,n3的分解中最小的正整数是21,则m+n=( )
分析:根据m2=1+3+5+…+11,n3的分解中最小的正整数是21,利用所给的分解规律,求出m、n,即可求得m+n的值.
解答:解:∵m2=1+3+5+…+11=
×6=36,
∴m=6
∵23=3+5,33=7+9+11,
43=13+15+17+19,
∴53=21+23+25+27+29,
∵n3的分解中最小的数是21,
∴n3=53,n=5
∴m+n=6+5=11
故选B.
| 1+11 |
| 2 |
∴m=6
∵23=3+5,33=7+9+11,
43=13+15+17+19,
∴53=21+23+25+27+29,
∵n3的分解中最小的数是21,
∴n3=53,n=5
∴m+n=6+5=11
故选B.
点评:本题考查归纳推理,考查学生的阅读能力,确定m、n的值是解题的关键.
练习册系列答案
相关题目