题目内容

16、已知a>0,b>0,求证:a(b2+c2)+b(c2+a2)≥4abc.
分析:由  b2+c2≥2bc,a>0,证得 a(b2+c2)≥2abc,同理可证 b(c2+a2)≥2abc,相乘即可得到要证的结论.
解答:证明:∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.
又∵c2+a2≥2ac,b>0,∴b(c2+a2)≥2abc.
∴a(b2+c2)+b(c2+a2)≥4abc
点评:本题考查用综合法证明不等式,证明a(b2+c2)≥2abc,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网