题目内容
已知函数f(x)=
ax3+ax2-x+10在区间[1,2]上不是单调函数,则a的范围为( )
| 1 |
| 3 |
A.[
| B.(
| C.[
| D.(
|
f′(x)=ax2+2ax-1
∵f(x)在区间[1,2]上不是单调函数
∴f(x)在区间[1,2]上有极值
∵f′(x)=ax2+2ax-1的对称轴为x=-1
∴ax2+2ax-1=0在区间[1,2]上只有一个根
∴f′(1)•f′(2)<0即(3a-1)(8a-1)<0
解得
<x<
故选D
∵f(x)在区间[1,2]上不是单调函数
∴f(x)在区间[1,2]上有极值
∵f′(x)=ax2+2ax-1的对称轴为x=-1
∴ax2+2ax-1=0在区间[1,2]上只有一个根
∴f′(1)•f′(2)<0即(3a-1)(8a-1)<0
解得
| 1 |
| 8 |
| 1 |
| 3 |
故选D
练习册系列答案
相关题目