题目内容
已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2,n∈N*).(1)求证:当n≥2时,{an+2an-1}和{an-3an-1}均为等比数列;
(2)求证:当k为奇数时,
| 1 |
| ak |
| 1 |
| ak+1 |
| 4 |
| 3k+1 |
(3)求证:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
分析:(1)整理an+1=an+6an-1得an+1-3an=-2(an-3an-1),an+1+2an=3(an+2an-1),进而判断出当n≥2时,{an+2an-1}是首项为15公比为3的等比数列,{an-3an-1}是首项为-10,公比为-2的等比数列.
(2)利用(1)中求得的an+2an-1和an+1-3an,两式相减求得an,进而求得当k为奇数时,
+
-
=
<0原式得证.
(3)利用(2)中的结论,进而可知当n为偶数时,求得
+
+…+
<
(1-
)<
,n为奇数时,
+
+…+
<
(1-
)<
,综合原式可证.
(2)利用(1)中求得的an+2an-1和an+1-3an,两式相减求得an,进而求得当k为奇数时,
| 1 |
| ak |
| 1 |
| ak+1 |
| 4 |
| 3k+1 |
4k•[8-7•(
| ||
| 3k+1•(3k+2k)•(3k+1-2k+1) |
(3)利用(2)中的结论,进而可知当n为偶数时,求得
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 3n+1 |
| 1 |
| 2 |
解答:解:(1)由an+1=an+6an-1(n≥2,n∈N*)得:
an+1+2an=3(an+2an-1),an+1-3an=-2(an-3an-1)
且a2+2a1=15,a2-3a1=-10.
∴当n≥2时,{an+2an-1}是首项为15公比为3的等比数列,
{an-3an-1}是首项为-10,公比为-2的等比数列.
(2)由(1)得an+1+2an=15×3n-1,an+1-3an=-10×(-2)n-1
以上两式相减得an=3n-(-2)n.
当k为奇数时,
+
-
=
+
-
=
=
<0,
∴
+
<
.
(3)由(2)知,当k为奇数时,
+
<
=
+
;
∴当n为偶数时,
+
+…+
<
+
+…+
=
(1-
)<
当n为奇数时,
+
+…+
<
(1-
)<
an+1+2an=3(an+2an-1),an+1-3an=-2(an-3an-1)
且a2+2a1=15,a2-3a1=-10.
∴当n≥2时,{an+2an-1}是首项为15公比为3的等比数列,
{an-3an-1}是首项为-10,公比为-2的等比数列.
(2)由(1)得an+1+2an=15×3n-1,an+1-3an=-10×(-2)n-1
以上两式相减得an=3n-(-2)n.
当k为奇数时,
| 1 |
| ak |
| 1 |
| ak+1 |
| 4 |
| 3k+1 |
| 1 |
| 3k+2k |
| 1 |
| 3k+1-2k+1 |
| 4 |
| 3k+1 |
=
| -7×6k+8×4k |
| 3k+1•(3k+2k)•(3k+1-2k+1) |
4k•[8-7•(
| ||
| 3k+1•(3k+2k)•(3k+1-2k+1) |
∴
| 1 |
| ak |
| 1 |
| ak+1 |
| 4 |
| 3k+1 |
(3)由(2)知,当k为奇数时,
| 1 |
| ak |
| 1 |
| ak+1 |
| 4 |
| 3k+1 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
∴当n为偶数时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 3n |
| 1 |
| 2 |
当n为奇数时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 3n+1 |
| 1 |
| 2 |
点评:本题主要考查了等比关系的确定,不等式的证明.考查了学生的逻辑思维能力和推理能力.
练习册系列答案
相关题目