题目内容

已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2,n∈N*).
(1)求证:当n≥2时,{an+2an-1}和{an-3an-1}均为等比数列;
(2)求证:当k为奇数时,
1
ak
+
1
ak+1
4
3k+1

(3)求证:
1
a1
+
1
a2
+…+
1
an
1
2
(n∈N*).
分析:(1)整理an+1=an+6an-1得an+1-3an=-2(an-3an-1),an+1+2an=3(an+2an-1),进而判断出当n≥2时,{an+2an-1}是首项为15公比为3的等比数列,{an-3an-1}是首项为-10,公比为-2的等比数列.
(2)利用(1)中求得的an+2an-1和an+1-3an,两式相减求得an,进而求得当k为奇数时,
1
ak
+
1
ak+1
-
4
3k+1
=
4k•[8-7•(
3
2
)
k
]
3k+1•(3k+2k)•(3k+1-2k+1)
<0
原式得证.
(3)利用(2)中的结论,进而可知当n为偶数时,求得
1
a1
+
1
a2
+…+
1
an
1
2
(1-
1
3n
)<
1
2
,n为奇数时,
1
a1
+
1
a2
+…+
1
an
1
2
(1-
1
3n+1
)<
1
2
,综合原式可证.
解答:解:(1)由an+1=an+6an-1(n≥2,n∈N*)得:
an+1+2an=3(an+2an-1),an+1-3an=-2(an-3an-1
且a2+2a1=15,a2-3a1=-10.
∴当n≥2时,{an+2an-1}是首项为15公比为3的等比数列,
{an-3an-1}是首项为-10,公比为-2的等比数列.
(2)由(1)得an+1+2an=15×3n-1,an+1-3an=-10×(-2)n-1
以上两式相减得an=3n-(-2)n
当k为奇数时,
1
ak
+
1
ak+1
-
4
3k+1
=
1
3k+2k
+
1
3k+1-2k+1
-
4
3k+1

=
-7×6k+8×4k
3k+1•(3k+2k)•(3k+1-2k+1)
=
4k•[8-7•(
3
2
)
k
]
3k+1•(3k+2k)•(3k+1-2k+1)
<0

1
ak
+
1
ak+1
4
3k+1

(3)由(2)知,当k为奇数时,
1
ak
+
1
ak+1
4
3k+1
=
1
3k
+
1
3k+1

∴当n为偶数时,
1
a1
+
1
a2
+…+
1
an
1
3
+
1
32
+…+
1
3n
=
1
2
(1-
1
3n
)<
1
2

当n为奇数时,
1
a1
+
1
a2
+…+
1
an
1
2
(1-
1
3n+1
)<
1
2
点评:本题主要考查了等比关系的确定,不等式的证明.考查了学生的逻辑思维能力和推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网